If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21k^2-14k=0
a = 21; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·21·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*21}=\frac{0}{42} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*21}=\frac{28}{42} =2/3 $
| −4.8f+6.4=-8.48 | | 8v+56=3v+66 | | 19y+-20+6y+6y+-13y=4 | | -6=x-6x | | 15x=-6x | | 15=(.75x) | | -1/6x=-11 | | 8u+44=4u+48 | | 2r+r-3r+r=8 | | F(x)=x^2+10x+35 | | 4w-30=w+18 | | G+5g-4g=10 | | 6x+22=9x+16 | | w−10=-1 | | 5-5(7-7x)=0 | | 9v+17=12v-7 | | 8a+2=a+9 | | 9w+5w-11w+2w=5 | | 2-4(4p-7)=158 | | 4u-6=u | | 4 = d-4 | | 17r-8r+6r=-15 | | 10v-4=4v+38 | | y+-1=-11 | | 9q-q+4q+q-7q=18 | | 2(x-3)-4(x-5)=-33 | | r-3= -1 | | −2x+4=2x−4 | | -3=-15-2(c-1)-3 | | Y=X^2+3x+4/3x+5 | | 5=5+2x | | q+4=18 |